Long Term Effect of High Glucose and Phosphate Levels on the OPG/RANK/RANKL/TRAIL System in the Progression of Vascular Calcification in rat Aortic Smooth Muscle Cells
نویسندگان
چکیده
Osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL)/receptor activator of NF-κB (RANK) axis, and TNF-related apoptosis-inducing ligand (TRAIL) participate in vascular calcification process including atherosclerosis, but their contributions under high glucose (HG) and phosphate (HP) condition for a long-term period (more than 2 weeks) have not been fully determined. In this study, we evaluated the effects of HG and HP levels over 2 or 4 weeks on the progression of vascular calcification in rat vascular smooth muscle cells (VSMCs). Calcium deposition in VSMCs was increased in medium containing HG (30 mmol/L D-glucose) with β-glycerophosphate (β-GP, 12 mmol/L) after 2 weeks and increased further after 4 weeks. OPG mRNA and protein expressions were unchanged in HG group with or without β-GP after 2 weeks. However, after 4 weeks, OPG mRNA and protein expressions were significantly lower in HG group with β-GP. No significant expression changes were observed in RANKL, RANK, or TRAIL during the experiment. After 4 weeks of treatment in HG group containing β-GP and rhBMP-7, an inhibitor of vascular calcification, OPG expressions were maintained. Furthermore, mRNA expression of alkaline phosphatase (ALP), a marker of vascular mineralization, was lower in the presence of rhBMP-7. These results suggest that low OPG levels after long term HG and phosphate stimulation might reduce the binding of OPG to RANKL and TRAIL, and these changes could increase osteo-inductive VSMC differentiation, especially vascular mineralization reflected by increased ALP activity during vascular calcification.
منابع مشابه
TRAIL-Deficiency Accelerates Vascular Calcification in Atherosclerosis via Modulation of RANKL
The osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) cytokine system, not only controls bone homeostasis, but has been implicated in regulating vascular calcification. TNF-related apoptosis-inducing ligand (TRAIL) is a second ligand for OPG, and although its effect in vascular calcification in vitro is controversial, its role in vivo is not yet established. This ...
متن کاملThe RANKL/RANK/OPG Signaling Pathway Mediates Medial Arterial Calcification in Diabetic Charcot Neuroarthropathy
OBJECTIVE The receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) signaling pathway (RANKL/RANK/OPG signaling) is implicated in the osteolysis associated with diabetic Charcot neuroarthropathy (CN); however, the links with medial arterial calcification (MAC) seen in people with CN are unclear. This study aimed to investigate the role of RANKL/OPG in MA...
متن کاملEffect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملMolecular Medicine RANKL Increases Vascular Smooth Muscle Cell Calcification Through a RANK-BMP4–Dependent Pathway
Vascular calcification commonly associated with several pathologies and it has been suggested to be similar to bone mineralization. The axis RANKL-OPG (receptor activator of nuclear factor B ligand–osteoprotegerin) finely controls bone turnover. RANKL has been suggested to increase vascular calcification, but direct evidence is missing. Thus, in the present work, we assess the effect of RANKL i...
متن کاملRANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway.
Vascular calcification commonly associated with several pathologies and it has been suggested to be similar to bone mineralization. The axis RANKL-OPG (receptor activator of nuclear factor kappaB ligand-osteoprotegerin) finely controls bone turnover. RANKL has been suggested to increase vascular calcification, but direct evidence is missing. Thus, in the present work, we assess the effect of RA...
متن کامل